Differential privacy for sparse classification learning
نویسندگان
چکیده
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملLocal Differential Privacy for Physical Sensor Data and Sparse Recovery
In this work, we exploit the ill-posedness of linear inverse problems to design algorithms to release differentially private data or measurements of the physical system. We discuss the spectral requirements on a matrix such that only a small amount of noise is needed to achieve privacy and contrast this with the ill-conditionedness. We then instantiate our framework with several diffusion opera...
متن کاملUnderstanding the Sparse Vector Technique for Differential Privacy
The Sparse Vector Technique (SVT) is a fundamental technique for satisfying differential privacy and has the unique quality that one can output some query answers without apparently paying any privacy cost. SVT has been used in both the interactive setting, where one tries to answer a sequence of queries that are not known ahead of the time, and in the non-interactive setting, where all queries...
متن کاملSparse Kernel Learning for Image Set Classification
No single universal image set representation can efficiently encode all types of image set variations. In the absence of expensive validation data, automatically ranking representations with respect to performance is a challenging task. We propose a sparse kernel learning algorithm for automatic selection and integration of the most discriminative subset of kernels derived from different image ...
متن کاملSparse learning for support vector classification
This paper provides a sparse learning algorithm for Support Vector Classification (SVC), called Sparse Support Vector Classification (SSVC), which leads to sparse solutions by automatically setting the irrelevant parameters exactly to zero. SSVC adopts the L0-norm regularization term and is trained by an iteratively reweighted learning algorithm. We show that the proposed novel approach contain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2020
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2019.09.020